Interpolating Blaschke Products and Angular Derivatives

نویسندگان

  • EVA A. GALLARDO-GUTIÉRREZ
  • PAMELA GORKIN
چکیده

We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H∞[b : b has finite angular derivative everywhere]. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computable Analysis and Blaschke Products

We show that if a Blaschke product defines a computable function, then it has a computable sequence of zeros in which the number of times each zero is repeated is its multiplicity. We then show that the converse is not true. We finally show that every computable, radial, interpolating sequence yields a computable Blaschke product.

متن کامل

Integral means of the derivatives of Blaschke products

We study the rate of growth of some integral means of the derivatives of a Blaschke product and we generalize several classical results. Moreover, we obtain the rate of growth of integral means of the derivative of functions in the model subspace K B generated by the Blaschke product B.

متن کامل

ar X iv : 1 51 2 . 05 44 4 v 2 [ m at h . C V ] 7 J ul 2 01 6 FINITE BLASCHKE PRODUCTS : A SURVEY

A finite Blaschke product is a product of finitely many automorphisms of the unit disk. This brief survey covers some of the main topics in the area, including characterizations of Blaschke products, approximation theorems, derivatives and residues of Blaschke products, geometric localization of zeros, and selected other topics.

متن کامل

Toeplitz algebras on the disk ✩

Let B be a Douglas algebra and let B be the algebra on the disk generated by the harmonic extensions of the functions in B. In this paper we show that B is generated by H∞(D) and the complex conjugates of the harmonic extensions of the interpolating Blaschke products invertible in B. Every element S in the Toeplitz algebra TB generated by Toeplitz operators (on the Bergman space) with symbols i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012